value of 0.0020 Å², calculated from the estimated standard deviation of the β_{ij} of the least-squares refinement, indicates that the rigid-body model is only moderately satisfactory.

This research was supported by the Robert A. Welch Foundation, Houston, Texas. The author wishes to thank Dr John Wainwright of NASA, Lyndon B. Johnson Space Center, Houston, Texas, for assistance in obtaining the diffraction data from the automatic diffractometer in his laboratory, Dr R. Shiono of the University of Pittsburgh for making the ORTEP plot, Dr A. L. Ternay Jr of the University of Texas at Arlington for kindly supplying the crystal and many interesting discussions, and Dr Margaret Mangion of this laboratory for her help in processing the data.

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
- CHU, S. S. C. (1972). Acta Cryst. B28, 3625-3632.
- CHU, S. S. C. (1973a). Acta Cryst. B29, 1690-1696.
- CHU, S. S. C. (1973b). Structure Interpretation Programs. Institute of Technology, Southern Methodist Univ.
- CHU, S. S. C. & CHUNG, B. (1973). Acta Cryst. B29, 2253– 2259.

CHU, S. S. C. & CHUNG, B. (1974a). Acta Cryst. B30, 235-236.

- Chu, S. S. C. & Chung, B. (1974b). Acta Cryst. B30, 1616-1618.
- CRUICKSHANK, D. W. J. (1965). Computing Methods in Crystallography, edited by J. S. ROLLETT, pp. 112–116. New York: Pergamon Press.
- Evans, S. (1970). Ph.D. thesis, Case Western Reserve Univ., Cleveland, Ohio.

- EVANS, S., DAVENPORT, D. & TERNAY, A. L. JR (1974a). Sixth International Symposium on Organic Sulfur Compounds, Bangor, Wales. Abstract R.B. 1.
- EVANS, S., DAVENPORT, D. & TERNAY, A. L. JR (1974b). J. Org. Chem. In preparation.
- EVANS, S. & TERNAY, A. L. JR (1974). J. Org. Chem. 39, 2941–2946.
- GALLANT, D. M. & BISHOP, M. P. (1967). Psychopharmacology. A Review of Progress, edited by E. H. EFRON, pp. 1093–1100.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- GILLEAN, J. A. III, PHELPS, D. W. & CORDES, A. W. (1973). Acta Cryst. B29, 2296–2298.
- International Tables for X-ray Crystallography (1962). Vol. III, pp. 201–207. Birmingham: Kynoch Press.
- JACKOBS, J. & SUNDARALINGAM, M. (1969). Acta Cryst. B25, 2487–2496.
- JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL 3794.
- MICHAELIS, W., SCHINDLER, O. & SIGNER, R. (1966). Helv. Chim. Acta, 49, 42-53.
- SCHINDLER, O., LEHNER, H., MICHAELIS, W. & SCHMUTZ, J. (1963). *Helv. Chim. Acta*, **46**, 1097–1108.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63-76.
- SHIONO, R. (1971). Technical Report 49, Crystallography Department, Univ. of Pittsburgh.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- TERNAY, A. L. JR, CHASAR, D. W. & SAX, M. (1967). J. Org. Chem. 32, 2465–2470.
- TERNAY, A. L. JR & EVANS, S. (1970). J. Chem. Soc. (D), pp. 407–408.
- ZIRKLE, C. L. & KAISER, C. (1970). *Medicinal Chemistry*, 3rd ed. Edited by A. BURGER, Part II, pp. 1410–1497. New York: Wiley–Interscience.

Acta Cryst. (1975). B31, 1087

The Crystal Structure of Bi₆O₇FCl₃

By Fredrik Hopfgarten

Division of Inorganic Chemistry 2, Chemical Center, The Lund Institute of Technology, P. O. B. 740, S-220 07 Lund 7, Sweden

(Received 11 November 1974; accepted 30 November 1974)

The structure of $Bi_6O_7FCl_3$ has been determined by symbolic addition and Fourier methods and refined to R=0.055 for 1214 independent counter intensities. The crystals are orthorhombic, space group *Pnma*, with a=20.105 (6), b=3.892 (2), c=15.432 (5) Å, Z=4. The Bi atoms are of two types, one fourcoordinated by O or O and F which form a nearly square plane, the other five-coordinated by two F and three O, all on one side of Bi. The Bi–O, F distances range between 2.19 and 2.51 Å. The fourfold coordination can be described as a square pyramid with the lone pair of electrons at its apex, and the five-coordination as an octahedron with the lone pair at one corner. The coordination polyhedra are linked by sharing edges and corners to form infinite layers parallel to [010]. Between the nets, trigonal prism columns of chloride ions run in the same direction.

Introduction

By heating BiOCl in air above 600° C, it was totally transformed into a new well defined phase, $Bi_{24}O_{31}Cl_{10}$

(Sillén & Edstrand, 1942). The substitution of O^{2-} by F^- in BiOCl is useful in preparing compounds with simple and predictable structures, related to the above phase. These substances can serve as models for the

study of principles of syntheses, the non-stoichiometry, and the possible mechanisms of the reactions. Preparative and structural studies are in progress on the systems Bi_2O_3 -BiOCl and BiOCl-BiOF-Bi₂O₃. The present paper reports the crystal structure of $Bi_6O_7FCl_3$, a new compound in the latter system.

Experimental

For the preparation of Bi₆O₇FCl₃, a mixture of Bi₂O₃, BiOCl and BiOF in the mole ratio 1:3:1 was heated in a sealed gold capsule for one day at 770°C. The product consisted of colourless needle-shaped crystals. Preliminary Weissenberg photographs indicated orthorhombic symmetry with the systematic absences 0kl and hk0 for k+l and h odd, respectively, indicating the space groups *Pnma* (No. 62) and $Pn2_1a$ (No. 33*). Powder photographs were taken in a Guinier-Hägg camera with Cu Ka radiation and KCl (a=6.2909 Å)added as an internal standard. Refinement of the cell parameters was performed by least-squares calculations on 27 lines according to Werner (1970). Some crystal data are given in Table 1. Intensities were collected on a Pailred diffractometer with Mo Ka radiation monochromatized by reflexion off the (002) planes of a graphite crystal, the monochromator angle being 6.08°. The single crystal $(0.018 \times 0.022 \times 0.32 \text{ mm})$ was mounted along the needle axis parallel to b. The reflexions h0l-h4l were collected for the Mo range, $\sin \theta/\lambda < 0.80$, by equi-inclination and ω -scan techniques, with a scan rate of 1.0° min⁻¹. The scan range was 3.0° for all reflexions. The stationary background counts were measured for 40 s at each end of the scan interval. The aperture size of the detector was 2.0° . The intensity of one standard reflexion was measured at regular intervals. The largest variation in its intensity was 2.8 %.

Reflexions for which the two measured background values differed by more than 3.09 times the e.s.d. of their difference were omitted. The integrated peak counts I were calculated from the total integrated peak counts, the background counts, and the counting time in the usual way. If $\sigma(I)/I \ge 0.387$, the reflexion was considered unobserved. For each layer line both hkl and hkl were measured, a total of 3924 reflexions. The intensities were corrected for Lorentz, polarization and absorption effects; the transmission factors varied from 0.159 to 0.276. The unobserved 1839 reflexions were deleted in the refinement. In the final step, mean values of the intensities of the planes hkl and \bar{hkl} were taken, resulting in 1224 independent reflexions.

Structure determination and refinement

The positions of Bi(1)-Bi(6) were determined by symbolic addition. The positions of all Cl and O(F) atoms could be deduced from a difference map. The centric

Table 1. Crystal data
Bi₆O₇FCl₃, F.W. 1491·23
Pnma,
$$a = 20.105$$
 (6), $b = 3.892$ (2), $c = 15.432$ (5) Å
 $V = 1207.8$ Å³, $Z = 4$
 $D_m = 8.27$, $D_x = 8.20$ g cm⁻³
 u (Mo K α) = 835 cm⁻¹

space group *Pnma* and the non-centric $Pn2_1a$ are both possible, in view of the systematic absences. The leastsquares refinement in *Pnma* progressed normally. As a reasonable structure and reasonable thermal parameters were obtained for *Pnma*, a refinement in $Pn2_1a$ was not performed. All ligands except Cl were treated as if they were O atoms in the calculations. In the structure there are two possible positions for the F atoms, according to Pauling's second rule in calculating $\sum s$ (the sum of the strength of the electrostatic valence bonds) (Pauling, 1929). However, *R* was equal for both positions.

Table 2. Positional and thermal parameters obtained in the final least-squares refinement

The anisotropic thermal parameters are based on the expression exp $[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12}+2kl\beta_{23}+2hl\beta_{13})]$. By symmetry $\beta_{12}=\beta_{23}=0$. The β_{ij} values are multiplied by 10⁴. Estimated standard deviations are given in parehtneses.

	x	У	Z	B (Å ²)
Bi(1)	-0.06855 (9)	1	0.0478 (2)	[1.91]
Bi(2)	-0.24070(7)	ł	-0.09002(9)	0.641
Bi(3)	0.09231 (9)	ł	0.16117 (11)	11.36
Bi(4)	0.26934 (7)	1 de la composición de la comp	0.28481 (9)	Î0·75
Bi(5)	0.55672 (7)	1	0.06361 (10)	10.78
Bi(6)	0.43114 (10)) <u>3</u>	0.21717 (13)	12.16
Cl(1)	0.1390 (5)	34	0·5617 (8)	1.4 (2)
Cl(2)	0.3176 (5)	34	0.4369 (7)	1.0 (1)
Cl(3)	0.1418(5)	34	0.3129 (7)	1.0 (1)
O(1)	0.2092 (13)	14	0.1516 (17)	0.5 (4)
O(2)	0.4969 (13)	1	-0.0604(19)	0.6 (4)
O(3)	0.0419 (12)	1	0.0319 (16)	0.8 (3)
O(4)	0.3782 (17)	14	0.2862 (23)	1.7 (5)
O(5)	-0.2914 (12)	14	-0.2167(23)	1.6 (5)
O(6)	0.4829 (22)	34	0.3431(31)	3.0 (8)
O(7)	-0.1283(17)	14	-0.0944(24)	1.7 (6)
F	0.5032 (14)	4	0.1900 (20)	0.9 (4)
	β_{11}	β22	β_{33}	β_{13}
Bi(1)	4.7 (0.4)	283 (14)	72.7 (1.6)	8.6 (0.6)
Bi(2)	4.3 (0.3)	103 (9)	6.3 (0.5)	-0.2(0.3)
Bi(3)	11.5 (0.4)	258 (12)	9.7 (0.7)	-2.8(0.4)
		122 (0)	6.1 (0.5)	0.4 (0.2)
BI(4)	$6 \cdot 1 (0 \cdot 3)$	123 (9)	0.110.31	-0.410.31
Bi(4) Bi(5)	6·1 (0·3) 3·9 (0·3)	123 (9)	12.7 (0.5)	-0.4(0.3) -1.8(0.4)

The F atom was assumed to be in the position given in Table 2. The final refinement in *Pnma* by the leastsquares method with anisotropic temperature factors for Bi and isotropic for the light atoms, gave R=0.055and $R_w=0.071$, where $R=\sum ||F_o|-|F_c||/\sum |F_o|$ and R_w $= [\sum w_i(|F_o|-|F_c|)^2/\sum w_i |F_o|^2]^{1/2}$. Cruickshank's weighting scheme, with a=300, c=0 and d=0, was used. $[\sum w_i(|F_o|-|F_c|)^2/(m-n)]^{1/2}$, where *m* and *n* are the number of observations and parameters varied, was

^{*} Orientation different from that given in International Tables for X-ray Crystallography (1965).

0.69. In the last cycle all parameter shifts were less than 0.01 of the e.s.d. The scattering factors used were those given by Cromer & Waber (1965) for neutral Bi and by Hanson, Herman, Lea & Skillman (1964) for neutral Cl, O and F.

Final positional and thermal parameters are given in Table 2, and observed and calculated structure factors in Table 3. All computations were made on the UNIVAC 1108 computer in Lund. A short account of the program system has been given by Stålhandske (1974).

Discussion

Interatomic distances and angles are given in Table 4.

The coordination around Bi can be described in the following two ways: Bi(1)-Bi(4) (Table 2) are each surrounded by four O atoms, Bi(5) by one F and three O atoms, the ligand atoms in each case forming a nearly square plane (*cf.* Table 4). The lone pair of electrons can be imagined as completing a square pyramid. This coordination polyhedron has been found previously in BiOCI (Bannister & Hey, 1935) and

Table 3. Observed and calculated structure factors

The columns list h, F_o and $|F_c|$. Reflexions marked with an asterisk were assigned zero weight in the least-squares refinement.

			, , , , , , , , , , , , , , , , , , ,	### ".1910 #.1910 #.1911 #						747 2.774 2.4777 4.577742. 4.777574. 4.7777574. 7.777574.77774.8777574.84. 4.7747777777777774741141884.779774.888 4.77491244.8884.4884.4884.4884.4884.4884.4884.	1992
1 441 457 2 230 237 3 146 146 4 449 458 5 405 371 6 279 252 7 184 186	15 261 264 10 80 90 18 186 191 49 97 105 20 273 275	<pre></pre>	11 210 277 13 75 60 14 172 174 15 110 147 16 14 01 17 148 148 18 06 167	13 84 78 10 249 290 17 178 165 88 1 18 16 4 80 79 2 81 93	14 246 255 10 75 71 17 77 79 18 136 152 19 142 158 20 276 252 21 248 245	9 80 63 10 78 65 12 214 213 14 120 117 16 141 144 17 88 71	6 108 110 7 111 112 R 56 88 9 86 87 10 276 273 11 221 222 15 112 108	17 #2 05 20 #5 74 21 142 *32 22 #2 74 K= % L= 9 0 1%2 170	R :03 102 0 11R 15A 10 105 111 11 R2 AD Fm 3 Lm 1R 1 163 163	4 74 77 9 257 225 6 57 51 9 240 252 11 152 146 12 105 92 13 151 136	0 107 163 7 40 84 5 02 99

Table 4. Interatomic distances and angles

Interatomic distances (Å) in Bi₆O₇FCl₃ compared with the corresponding distances in BiOF and BiOCl (Aurivillius, 1964a. The estimated standard deviations are given in parentheses.

	Bi ₆ O ₇ FCl ₃	BiOF	BiOCl		Bi ₇ O ₆ FCl ₃	BiOF	BiOCl
Bi-Bi	$\geq 3.584(3)$	$\geq 3.694(3)$	≥ 3.71 (1)	Bi(4)-2O(5)	2.25 (2)		
Bi(1)-2Cl(2)	3.168 (8)	1000.01/0001104.0040		Bi(5)-2O(2)	2.23(1)		
Bi(2)-2Cl(1)	3.135 (9)			Bi(5)-O(2)	2.26(3)		
Bi(2)-2Cl(2)	3.212 (9)			Bi(6)-2O(4)	2.46(2)		
Bi(3) - 2Cl(3)	3.203 (9)		3.49 (4)	Bi(6)-O(6)	2.20(5)		
Bi(4) - 2Cl(2)	3.143 (9)		3.07 (2)	Bi(1)-2O(6)	2.77(3)		
Bi(4)-2Cl(3)	3.247 (8)			Bi(3)-2O(6)	2.94(3)		
Bi(5)-2Cl(1)	3.204 (10)			Bi(5)-F	2.22(3)		
Bi(5)-2Cl(3)	3.217 (8)			Bi(6)-2F	2.46(2)	2.75 (2)	
Bi(1)-O(7)	2.51(4)			CI-O	3.32 (3)-3.43	(2)	> 3.25(3)
Bi(1)-2O(3)	2.36(1)			F-O	$\geq 2.79(3)$	2.75 (5)	= 0 = 0 (0)
Bi(1)-O(3)	2.24(2)			F-F	3.892(=b)	3.44 (8)	
Bi(2)-2O(1)	$2 \cdot 26(1)$			CI-CI	3.84 (2)-3.90	(2)	3.48 (5)
Bi(2) - O(5)	$2 \cdot 21(3)$			O(1) - 2O(5)	2.74(3)	\/	e 16 (e)
Bi(2)-O(7)	2.26 (3)			O(1) - 2O(7)	2.69(3)		
Bi(3) - O(1)	2.36(3)	2.273(2)	2.309(4)	O(2) - 2O(2)	2.70(4)		
Bi(3)-O(3)	2.24(2)			O(3) - 2O(7)	2.78(3)	2.6494(4)	2.7457(5)
Bi(3)-2O(7)	$2 \cdot 31(2)$			O(3) - 2O(3)	2.76 (3)		
Bi(4)-O(1)	2.37 (3)			O(4)-2O(5)	2.82 (4)		
Bi(4) - O(4)	2.19 (3)			O(4)-2O(6)	3.00 (4)		

Fig. 1. The structure of Bi₆O₇FCl₃ projected along the y axis. The bismuth atoms are coordinated to oxygen (fluorine) atoms in the form of square pyramids and octahedra, connected to infinite layers parallel to [010]. The heavier and the lighter polyhedra are b/2 apart. The chloride ions form trigonal prisms, running in the same direction. All atoms are at the heights $y=\frac{1}{4}$ or $\frac{3}{4}$.

Fig. 2. The structure of Bi₆O₇FCl₃ projected along the y axis. The coordination polyhedra of bismuth are described as octahedra and square antiprisms, the bismuth atoms in the latter case coordinated to eight ligands (oxygen, fluotine and chlorine). The polyhedra are fused to a three-dimensional network, interleaved by tunnels running along [010]. The heavier and lighter polyhedra are b/2 apart. All atoms are at the heights $y=\frac{1}{4}$ or $\frac{3}{4}$.

	Table 4	(cont.)	
Selected angles (°)	in Bi ₆ O ₇ FCl ₃	and all a second	540
The square plane			
$\begin{array}{c} O(5)-O(1)-O(5)\\ O(7)-O(1)-O(7)\\ O(2)-O(2)-O(2)\\ O(2)-O(2)-F\\ FO(2)-F\\ O(3)-O(3)-O(3)\\ \end{array}$	90·4 (1·3) 92·7 (1·4) 92·3 (1·8) 89·5 (0·7) 88·6 (1·2) 89·7 (1·4)	O(7)-O(3)-O(7) O(7)-O(3)-O(3) O(5)-O(4)-O(5) O(4)-O(5)-O(1) O(1)-O(7)-O(3)	88.7 (1.2) 90.8 (0.6) 87.4 (1.4) 91.1 (0.6) 89.3 (0.5)
In the octahedron			
O(4)-O(4)-F FO(4) FO(6)-F	90·00 (0·0) 90·00 (0·0) 78·0 (1·3)	O(4)-O(6)-O(4) O(4)-O(6)-F	81·0 (1·4) 57·2 (1·0)
The trigonal prism			
Cl(1)-Cl(2)-Cl(3) Cl(1)-Cl(3)-Cl(2) Cl(2)-Cl(1)-Cl(3)	59·5 (0·3) 61·0 (0·3) 59·5 (0·3)		

BiOF (Aurivillius, 1964a). Bi(6) (Table 2), on the other hand, is surrounded by two F and three O atoms, all on one side. The lone pair of electrons completes a distorted octahedron (Table 4). The square pyramids are joined by sharing edges, forming layers which are connected to the octahedra by sharing corners. The nets of formula $[Bi_6O_7F^{3+}]_n$ zigzag through the structure parallel to **b**. Between them are trigonal prism columns of chloride ions, running in the same direction. A projection of the described layer structure is given in Fig. 1. In the structure of red PbO (Leciejewicz, 1961), there are similar layers consisting of square pyramids.

The coordination around Bi(1)-Bi(5) can also be described as a square antiprism. Bi(1), Bi(3) are each surrounded by two Cl and six O atoms, Bi(2), Bi(4)by four Cl and four O atoms and Bi(5) by four Cl one F and three O atoms. This type of coordination polyhedron of bismuth has also been found in the structure of $BiOHCrO_4$ (Aurivillius 1964b). The square antiprisms are joined by sharing faces and edges with other antiprisms, forming blocks, which are connected by sharing corners with the described above octahedra. The structure can in this way be described as being built up of a three-dimensional network of formula $[Bi_6O_7FCl_3]_n$ with tunnels running parallel to **b**. A projection of this network is given in Fig. 2.

The author is much obliged to Professor Bengt Aurivillius for his stimulation and helpful interest, and to Drs Sten Andersson and Karin Aurivillius for valuable discussions and comments. This investigation forms part of a research program, on salts of heavy metals, financially supported by the Swedish Natural Science Research Council.

References

AURIVILLIUS, B. (1964a). Acta Chem. Scand. 18, 1823– 1830.

- AURIVILLIUS, B. (1964b). Acta Chem. Scand. 18, 1937– 1957.
- BANNISTER, F. A. & HEY, M. H. (1935). Miner. Mag. 24, 49.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104– 109.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- International Tables for X-ray Crystallography (1965). Vol. I. Birmingham: Kynoch Press.
- LECIEJEWICZ, J. (1961). Acta Cryst. 14, 1304.
- PAULING, L. (1929). J. Amer. Chem. Soc. 51, 1010-1026.
- SILLÉN, L. G. & EDSTRAND, M. (1942). Z. Kristallogr. (A) 104, 178–196.
- STÅLHANDSKE, C. (1974). Acta Cryst. B30, 1586–1589.
- WERNER, P.-E. (1970). Ark. Kem. 31, 513–516.

Acta Cryst. (1975). B31, 1092

Structure Cristalline de la Méthyl(diméthylglyoximato)eau-Cobalt(III)

PAR DARIA GINDEROW

Laboratoire de Chimie Appliquée de l'Etat Solide, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France

(Reçu le 20 septembre 1974, accepté le 29 novembre 1974)

 CH_3 . $Co(C_4N_2O_2H_7)_2$. H_2O crystallizes in space group *Pnma*, with cell constants $a=13\cdot136$, $b=9\cdot112$, $c=12\cdot114$ Å, Z=4. The structure was solved by the heavy-atom method. Refinement was carried out by the full-matrix least-squares procedure, with 946 observed reflexions; the final *R* value is 10%. The molecule has a symmetry plane which passes through the cobalt atom and the ligands H_2O and CH_3 .

Introduction

La méthyl(diméthylglyoximato)eau-cobalt(III) fait partie de la série des méthylcobaloximes synthétisées et étudiées par Benlian & Hernandorena (1971). Nous avons entrepris l'étude cristallographique du composé pour examiner s'il y a une influence *trans* sensible du ligand H_2O sur le ligand CH_3 .

Partie expérimentale

Les cristaux sont des aiguilles rouge-brun qui cristallisent dans l'eau. Le groupe spatial et les dimensions de la maille ont été déterminés par enregistrement en chambre de Weissenberg. Les valeurs des paramètres de la maille et les intensités des réflexions ont été mesurées au laboratoire de recherche Philips à Eindhoven sur le diffractomètre à quatre cercles PW 1100. Les intensités ont été mesurées avec la radiation du molybdène pour les angles θ inférieurs à 25°.

Sur 1356 réflexions indépendantes, 946 réflexions répondant au critère $I > 2\sigma(I)$ ont été utilisées pour la détermination et l'affinement de la structure. Les intensités diffractées ont été corrigées des facteurs de Lorentz et de polarisation. Les effets de l'absorption ont été négligés. Les données cristallographiques sont les suivantes: C₉N₄O₅H₁₉Co, M=322,21; orthorhombique *Pnma*, a=13,136 (5); b=9,112 (3); c=12,114 (4) Å; V=1450,1 Å³; Z=4; $D_m=1,45$; $D_c=1,48$ g cm⁻³; $\mu=12,53$ cm⁻¹ pour λ (Mo K α).

Détermination de la structure et affinement

La structure a été résolue par la technique de l'atome lourd. L'étude de la fonction de Patterson tridimensionnelle a permis de localiser l'atome de cobalt ainsi que l'atome de carbone de la liaison Co-CH₃ et l'atome d'oxygène de la liaison Co-H₂O, ceux-ci sont en position spéciale sur les plans de symétrie de la maille. Les positions des autres atomes ont été déterminées par des synthèses de Fourier successives.

L'affinement des coordonnées atomiques et des coefficients de température a été réalisé par la méthode des moindres carrés (matrice complète). Pour tous les atomes avec des facteurs d'agitation thermique isotrope, le facteur R est égal à 0,12 $(R = \sum |\Delta F|/\sum |F_a|)$.

L'affinement de la structure a été poursuivi avec des facteurs d'agitation thermique anisotrope sans les atomes d'hydrogène, car ceux-ci ne sont pas repérables avec précision sur la série de densité électronique différence. En fin d'affinement, nous avons utilisé un schéma de pondération de la forme: $w = 5 - 0.125|F_o| +$